Blog Archives

Star Trek Science: Here comes the Impulse Engine!

Star Trek fans take note: Have a seat before you read the next sentence or prepare to swoon.

University of Alabama-Huntsville (UAH) aerospace engineers working with NASA, Boeing and Oak Ridge National Laboratory are investigating how to build fusion impulse rocket engines for extremely high-speed space travel.

“Star Trek fans love it, especially when we call the concept an impulse drive, which is what it is,” says team member Ross Cortez, an aerospace engineering Ph.D. candidate at UAH’s Aerophysics Research Center.

Stay seated Trekkies, because there’s more.

“The fusion fuel we’re focusing on is deuterium [a stable isotope of hydrogen] and Li6 [a stable isotope of the metal lithium] in a crystal structure. That’s basically dilithium crystals we’re using,” Cortez says, referring to the real-world equivalent of the fictional element used to power Star Trek’s Starship Enterprise.

While this engine, if produced, wouldn’t generate a fraction of the velocity as the faster-than-light warp drives envisioned in the TV shows, books and movies, it could produce speeds that exceed other not-science-fiction-based systems that rocket scientists are investigating.

Their ultimate goal is to develop a nuclear fusion propulsion system by 2030 that can spirit spacecraft from Earth to Mars in around three months—about twice as fast as researchers think they could go with a nuclear fission engine, another scheme that is being investigated but has not yet been built.

Their current design has a spacecraft with the impulse engines being built in low Earth orbit, so the thrusters and ship wouldn’t need to cope with the atmosphere or achieving escape velocity. That doesn’t mean it would be a lightweight when fully assembled, though. Cortez says the craft could tip the scales at almost 500 tons.

Major problems to solve

There’s a big gap between hopes and goals, though. For decades, nuclear fusion researchers have worked to harness the huge amounts of energy generated from slamming atoms together so hard they fuse. Their efforts have led to scientific progress, but the goal of getting more energy out of a fusion reaction than what is required to smash them together at amazingly high speeds has so far proven elusive.

Last week, Sandia National Laboratory investigators said they are getting closer to “break-even,” the holy grail of research that will see the same amount or more energy released from a nuclear fusion reaction than that which was put in.

“We’re interested in deep-space exploration,” says Dr. Jason Cassibry, a UAH engineering professor and the head of the research team. “Right now humans are stuck in low Earth orbit, but we want to explore the solar system. We’re trying to come up with a system that will demonstrate break-even for thermonuclear propulsion.”

To really start getting around the solar system, spacecraft will need to go much faster than they do now.

According to astronomy professor Courtney Seligman, the next date Earth will be closest to Mars after the team’s 2030 objective will be in May 2031, when the two planets will be 51.4 million miles apart. For the team’s fusion-powered spacecraft to reach the red planet in three months at that point, it would have to travel at almost 24,000 miles per hour, or about 10 times the muzzle velocity of a bullet fired from an assault rifle.

(conceptual diagram of the team’s fusion impulse engine. Image courtesy Ross Cortez/UAH)

Z-pinch fusion and magnetic nozzles

To hit this phenomenal speed, the researchers are investigating something called z-pinch fusion as a source of propulsion. Cortez says the technique takes a cylindrical array of super-thin lithium wires and puts a massive electric current through them. The electricity—millions of amps are being sent through the wires in 100 nanosecond pulses, which could produce 3 terawatts of output power—creates a magnetic field around the array and vaporizes the wires to form plasma. The magnetic field pinches the plasma until it collapses on a core of deuterium and lithium, which they hope will cause its atoms to fuse and result in a massive release of energy.

“What we’re aiming for is to get enough compression and heat in the z-pinch implosion to cause the fusion fuel to react,” Cortez says. “With the energy that would release, we could get millions of pounds of thrust out the back of this thing—on the order of Saturn-V-class thrust.”

After achieving the proper speed, the engines would be shut down and the craft would coast to its target.

Besides figuring out the fusion problem, another obstacle to their goal is how to contain and direct the resulting energy to generate thrust—no small task because the reaction would create temperatures in the millions of degrees Celsius, enough to vaporize any known material. To solve this problem, part of the team is working on another line of research, which seeks to develop a “magnetic nozzle.” This would use directed magnetic fields to guide the energy out of the engine.

“We’re facing some pretty heavy problems to getting this thing working; it won’t be a cinch,” Cortez says. “But we’re very ambitious and we’ve got a lot of great ideas. Put enough bright people to work on it and you’re going to get gold or, in this case, fusion.”

But even if they don’t reach their objective of developing the z-pinch fusion propulsion system, the group’s work will likely be useful in the global effort to develop terrestrial fusion reactors as a source of clean, limitless energy.

The major hurdles have not yet shaken Cortez’s optimism, because he keeps thinking of what success might mean: “How could I not stay interested? With this work, eventually, I might have the chance of seeing Jupiter up close or help humanity colonize Mars.”

(UAH doctoral candidate Ross Cortez assembles a device that generates massive bursts of electricity for fusion propulsion research.)

Top Image: A conceptual model of the University of Alabama-Huntsville’s fusion impulse propulsion spacecraft. Courtesy Ross Cortez/UAH.

Michael Keller is the Managing Editor of Txchnologist. His science, technology and international reporting work has appeared online and in newspapers, magazines and books, including the graphic novel Charles Darwin’s On the Origin of Species. Reach him at mkeller@groupsjr.com.

Advertisements

NASA Mars Rover Targets Unusual Rock!

NASA Mars Rover Targets Unusual Rock Enroute to First Destination

ScienceDaily (Sep. 19, 2012) — NASA’s Mars rover Curiosity has driven up to a football-size rock that will be the first for the rover’s arm to examine.  Curiosity is about 8 feet (2.5 meters) from the rock. It lies about halfway from the rover’s landing site, Bradbury Landing, to a location called Glenelg. In coming days, the team plans to touch the rock with a spectrometer to determine its elemental composition and use an arm-mounted camera to take close-up photographs.

Both the arm-mounted Alpha Particle X-Ray Spectrometer and the mast-mounted, laser-zapping Chemistry and Camera Instrument will be used for identifying elements in the rock. This will allow cross-checking of the two instruments. The rock has been named “Jake Matijevic.” Jacob Matijevic (mah-TEE-uh-vik) was the surface operations systems chief engineer for Mars Science Laboratory and the project’s Curiosity rover. He passed away Aug. 20, at age 64. Matijevic also was a leading engineer for all of the previous NASA Mars rovers: Sojourner, Spirit and Opportunity. Curiosity now has driven six days in a row. Daily distances range from 72 feet to 121 feet (22 meters to 37 meters). “This robot was built to rove, and the team is really getting a good rhythm of driving day after day when that’s the priority,” said Mars Science Laboratory Project Manager Richard Cook of NASA’s Jet Propulsion Laboratory in Pasadena, Calif. The team plans to choose a rock in the Glenelg area for the rover’s first use of its capability to analyze powder drilled from interiors of rocks. Three types of terrain intersect in the Glenelg area — one lighter-toned and another more cratered than the terrain Curiosity currently is crossing. The light-toned area is of special interest because it retains daytime heat long into the night, suggesting an unusual composition. “As we’re getting closer to the light-toned area, we see thin, dark bands of unknown origin,” said Mars Science Laboratory Project Scientist John Grotzinger of the California Institute of Technology, Pasadena. “The smaller-scale diversity is becoming more evident as we get closer, providing more potential targets for investigation.” Researchers are using Curiosity’s Mast Camera (Mastcam) to find potential targets on the ground. Recent new images from the rover’s camera reveal dark streaks on rocks in the Glenelg area that have increased researchers’ interest in the area. In addition to taking ground images, the camera also has been busy looking upward. On two recent days, Curiosity pointed the Mastcam at the sun and recorded images of Mars’ two moons, Phobos and Deimos, passing in front of the sun from the rover’s point of view. Results of these transit observations are part of a long-term study of changes in the moons’ orbits. NASA’s twin Mars Exploration Rovers, Spirit and Opportunity, which arrived at Mars in 2004, also have observed solar transits by Mars’ moons. Opportunity is doing so again this week. “Phobos is in an orbit very slowly getting closer to Mars, and Deimos is in an orbit very slowly getting farther from Mars,” said Curiosity’s science team co-investigator Mark Lemmon of Texas A&M University, College Station. “These observations help us reduce uncertainty in calculations of the changes.” In Curiosity’s observations of Phobos this week, the time when the edge of the moon began overlapping the disc of the sun was predictable to within a few seconds. Uncertainty in timing is because Mars’ interior structure isn’t fully understood. Phobos causes small changes to the shape of Mars in the same way Earth’s moon raises tides. The changes to Mars’ shape depend on the Martian interior which, in turn, cause Phobos’ orbit to decay. Timing the orbital change more precisely provides information about Mars’ interior structure. During Curiosity’s two-year prime mission, researchers will use the rover’s 10 science instruments to assess whether the selected field site inside Gale Crater ever has offered environmental conditions favorable for microbial life. For more about Curiosity, visit: http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl. You can follow the mission on Facebook and Twitter at: http://www.facebook.com/marscuriosity and http://www.twitter.com/marscuriosity.

 

 

Mars Rovers Goes Viral: ‘I’m NASA and I know it’

20120817-103845.jpg

It’s sexy to be a scientist.

WATCH THE VIDEO HERE.

A new viral video set to the tune of LMFAO’s “Sexy and I Know It” is making the rounds, paying a hilarious tribute to NASA’s Mars rover Curiosity team in the wake of the country’s obsession with its landing on Aug. 5.

20120817-104105.jpg
The spoof video shows a group of “NASA” members hard at work on landing the Mars rover, touting their space skills in rap form.

“I got stars on my ‘hawk and I ain’t afraid to show it,” sings a spiky-haired impersonator of NASA’s leading heartthrob, Bobak Ferdowsi, who shot to nationwide fame after video of him the night of the landing lit up the Internet.

20120817-104119.jpg
The chorus of the catchy tune, of course, is, “We’re NASA and we know it.”

In the video, the group — suited up in NASA-esque blue polo shirts and sitting in a dummy control room dance through the streets and rap their space terms alongside the beat.

“This is how I rove, bakin’ red rocks in my nuclear stove,” one lyric goes, accompanied by cute animations. The faux NASA nerds also show off some synchronized dance moves, featuring a woman in an American flag bikini and a man in an astronaut-style orange jumpsuit.

The video was put together by Seattle-based comedy group Satire, with the role of Bobak played by web video comedian David Hudson. It got a stamp of approval from both NASA’s official Twitter account and the verified account for the rover itself, which both retweeted the link to the legions of space fans who have been extremely vocal in their passion for all things Curiosity since the Mars landing.

“This fan-made video is AWESOME (and I know it.)” the rover tweeted, adding the hashtag “#wiggle #wiggle #wiggle as another nod to the LMFAO song. The Mohawk man himself also gave the video a thumbs up.

“Well played!” Ferdowsi tweeted.

“Video is hilarious & awesome, but don’t know that we can dance like that (see high5s for ref),” he added, poking fun at himself and his team for their well-chronicled awkward high-fives the night of the Rover landing.

20120817-104127.jpg
BY MEENA HART DUERSON / NEW YORK DAILY NEWS
THURSDAY, AUGUST 16, 2012, 12:47 PM
Read more: http://www.nydailynews.com/news/national/mars-rover-fans-viral-video-nasa-i-article-1.1137698#ixzz23osZDy8N

NASA’s Phoenix Spacecraft Lands At Martian Arctic Site

A NASA spacecraft has sent pictures showing itself in good condition after making the first successful landing in a polar region of Mars.

The spacecraft Phoenix landed in the northern polar region today to begin three months of examining a site chosen for its likelihood of having frozen water within reach of the lander’s robotic arm. Radio signals received at 6:53:44 p.m. (Texas/ Central Standard Time) confirmed the Phoenix Mars Lander had survived its difficult final descent and touchdown 15 minutes earlier.

The signals took that long to travel from Mars to Earth at the speed of light.  Mission team members at NASA’s Jet Propulsion Laboratory, Pasadena, Calif.; Lockheed Martin Space Systems, Denver; and the University of Arizona, Tucson, cheered confirmation of the landing and eagerly awaited further information from Phoenix later tonight. From the initial information sent from Phoenix, the site appears to be what exactly what they thought. Now, it’s time to go find the ice.

“We see the lack of rocks that we expected, we see the polygons that we saw from space, we don’t see ice on the surface, but we think we will see it beneath the surface. It looks great to me,” said Peter Smith of the University of Arizona, Tucson, principal investigator for the Phoenix mission.

“Phoenix is an amazing machine, and it was built and flown by an amazing team. Through the entire entry, descent and landing phase, it performed flawlessly,” said Ed Sedivy, Phoenix program manager at Lockheed Martin Space Systems Company. “The spacecraft stayed in contact with Earth during that critical period, and we received a lot of data about its health and performance. I’m happy to report it’s in great shape.”

Phoenix uses hardware from a spacecraft built for a 2001 launch that was canceled in response to the loss of a similar Mars spacecraft during a 1999 landing attempt. Researchers who proposed the Phoenix mission in 2002 saw the unused spacecraft as a resource for pursuing a new science opportunity. A few months earlier, NASA’s Mars Odyssey orbiter discovered that plentiful water ice lies just beneath the surface throughout much of high-latitude Mars. NASA chose the Phoenix proposal over 24 other proposals to become the first endeavor in the Mars Scout program of competitively selected missions.

First Photo – Phoenix opens her eyes!

The Mars Surface

For more about Phoenix, visit http://www.nasa.gov/phoenix .

%d bloggers like this: