Science has seen the future…and it’s invisible!

In the early 1990s, George Bush Senior led the U.S. into war with Iraq’s Saddam Hussein. “Operation Desert Storm” became the first war to be televised “live.” Amid the images of explosions and soldiers and tanks covered in desert camouflage, the war also shed light on the Stealth jet fighter. Though it had been in use by the military since the early 1970s, for the first time it registered in the popular consciousness that this sleek jet fighter was virtually invisible to radar. At the time, being invisible to radar was a concept that seemed to come straight from the movies, rather than an evening news report.

Fast forward to 2008, with American forces embedded in a much different Iraq and the talk about invisibility circulating at the Pentagon has gone beyond radar, and into the realm of sight. Or out of sight, quite literally. Invisibility, once thought to be scientifically impossible and an outlandish concept promoted only in science fiction, is back, so to speak, on the radar.

In fact, one of the world’s foremost physicists, Michio Kaku, has put his academic mind to some of science fiction’s other concepts, such as teleportation and force fields, and is convinced that they, too, can become reality. At Duke University, Kaku explains, researchers funded by the military were able in 2006 to render a microscopic object invisible to microwave radiation. Then, a few months ago, researchers at Cal Tech and in Germany achieved the same result with visible light.

“They were able to achieve invisibility to red and green light. Single colours of light can be bent in a way consistent with invisibility on a microscopic scale using nanotechnology,” Kaku says. This has huge potential on the battlefield. Imagine a tank being invisible to enemy forces. No wonder the Pentagon is bankrolling research in this field. “The next step is to do a large object at one light colour,” Kaku says. “Within 10 years, we may be able to make an object completely invisible to one colour of light.”


And that is only one of the seemingly outrageous accomplishments in the works that Kaku discusses in his new book, Physics of the Impossible.

While the chances of someone being teleported – as in the recent hit movie Jumper – is highly unlikely, Kaku points out that teleportation of an inorganic molecule has already been achieved. And how about the fact that, while time travel poses philosophical questions that can twist your mind like trying to squeeze water out of a soaking wet towel, on principle it does not violate the known laws of physics. In the introduction of the book, he warns against ruling out great possibilities because “in my own short lifetime, I have seen the seemingly impossible become established fact over and over again.” Commenting on his book, which was published in March, Kaku says: “We are taking ideas that are usually the property of science fiction and we are looking at them with a very serious analysis with the most recent advances in physics. Science is doubling every 10 years – it’s almost too much information to print. As a result, the public is really quite unaware of the breakthroughs that we are looking forward to over the next few decades.”

How is it possible to make something invisible? Kaku believes that by using metamaterials, a substance with optical properties not found in nature, scientists will be able to eventually render subjects invisible. Another seemingly impossible idea that Kaku deals with is travel outside of our solar system. “The idea of warping in space comes from Einstein not Star Trek, and the invention the atomic bomb was predicted almost to the date in an H.G Wells novel.”

While the concept of bringing a mega-size starship with hundreds of people aboard to another star is not likely, he says NASA is making advances toward sending billions of self-reproducing nanosized exploration vessels throughout the galaxy. Some of the changes that excite Kaku are the possibilities of computers carrying information through light instead of electricity, or computers functioning on DNA molecules. Another reality that may change our view of the possible is the question of extraterrestrial life.

“It’s almost a certainty; microbial life for sure,” Kaku explains. “The odds are that there are civilizations much more advanced than us. We can count 100 billion stars in our galaxy and 100 billion galaxies in the visible universe. That’s 100 billion squared for the number of stars in the visible universe. The probability that one of these stars has a planet that will have life more intelligent than us, I think, is 100 per cent.” This marriage of science fact and science fiction, while exciting, Michio concedes, is nothing new. Instead, Michio points out that they are interrelated traditions.

Advertisements

Posted on April 13, 2008, in Uncategorized and tagged , , , , , , , , . Bookmark the permalink. Leave a comment.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: